首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Extensional flow behavior of polymer solutions and particle suspensions in a spinning motion
Authors:CB Weinberger  JD Goddard
Institution:University of Michigan, Department of Chemical Engineering, Ann Arbor, MI 48104, U.S.A.
Abstract:Mechanical spinning of fluid filaments was used to generate an extensional flow, in which rheological measurements were obtained for a Newtonian fluid, two aqueous polymer solutions, and two fluid suspensions of rod-shaped particles. The tensile stress was determined by measuring the tensile force of the fluid filament while the kinematics were determined from photographic measurement of the filament profile and the assumption of a flat velocity profile. The measured tensile stresses for the Newtonian fluid matched predicted stresses, thereby confirming the validity of the experimental technique.The spinning behavior of each polymer solution could be correlated as stress versus extension rate. The apparent “spinning viscosity” increased with increasing rate of extension, in contrast to shear-thinning behavior in viscometric flow. For the fluid suspensions, the presence of rod-shaped particles increased the apparent viscosity far more in extensional flow than in shear. Tensile stresses calculated from a theoretical formula for suspensions proposed by Batchelor agreed rather well with experiment. Some general criteria for the interpretation of the spinning experiment are proposed, and some microrheological implications of the present findings are discussed.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号