首页 | 本学科首页   官方微博 | 高级检索  
     检索      


A novel bottom-viewed inductively coupled plasma-atomic emission spectrometry
Institution:1. The Key Laboratory of Beam Technology and Material Modification of the Ministry of Education, Beijing Normal University, Beijing 100875, China;2. College of Nuclear Science and Technology, Beijing Normal University, Beijing 100875, China
Abstract:A novel optical configuration for inductively coupled plasma (ICP)-atomic emission spectrometry is presented. Plasma emission is measured axially via the bottom end of the ICP torch. Analytical performance, such as increase in signal-to-background ratio (SBR) over radially viewed ICP and linear dynamic range, is comparable to that of end-on axially viewed ICP reported in the literatures. Under typical ICP operating conditions (forward power=1.0–1.6 kW, central channel gas flow rate=0.8–1.4 l/min), SBR is generally five times or more that of radial-viewing mode (observation heights=3–20 mm) for atomic lines of elements of low to medium ionization potential (Na, K, Sr and Ba). The enhancement factor in SBR is two to four times for ionic lines (e.g. MgII) and atomic lines of elements of high ionization potential (Zn). The influence of ICP forward power and carrier gas flow rate on analyte emission intensity and SBR were also studied. Similar to radially viewed ICP, as forward power increases, the net emission intensity increases and SBR decreases. Using a constant flux of analyte aerosols, the net intensity decreases as the central channel gas flow rate increases. No trend of SBR vs. central channel gas flow rate, however, is found. The linear dynamic range starts and ends at analyte concentration 0.5–1 order of magnitude lower than the corresponding radial-viewing mode. As a result, the span of linear dynamic range is similar for all viewing modes. Matrix effects of K and Ca on atomic lines are different from those reported for end-on axially viewed ICPs, probably due to the difference in the plasma regions that were probed. The matrix effects on ionic lines, however, are similar in magnitude.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号