首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Consideration of molecular arrangements in regio- and enantioselective reduction of an NAD model compound controlled by carbonyl oxygen orientation
Authors:Mikata Yuji  Aida Shiho  Inaba Yoko  Yano Shigenobu
Institution:KYOUSEI Science Center, Nara Women's University, Nara 630-8506, Japan. mikata@cc.nara-wu.ac.jp
Abstract:The regio- and enantioselectivity of the reduction of an NAD model compound having axial chirality with respect to the C(3)(quinolinium)-C(carbonyl) bond, 3-piperidinylcarbonyl-1,2,4-trimethylquinolinium ion (1), by using several reducing agents is described. Reaction of 1 with sodium hydrosulfite affords the 1,4-reduced product, 3-piperidinylcarbonyl-1,2,4-trimethyl-1,4-dihydroquinoline (), with low enantioselectivity, whereas sodium borohydride promotes 1,2-reduction, affording 3-piperidinylcarbonyl-1,2,4-trimethyl-1,2-dihydroquinoline () as the sole product in a moderate enantioselectivity. When 1 was reduced by the chiral NADH model compound, 2,4-dimethyl-3-(N-alpha-methylbenzylcarbamoyl)-1-propyl-1,4-dihydropyridine (Me(2)PNPH (4)), the regioselectivity and enantioselectivity of the reaction were significantly altered by the stereochemistry of 1 and 4. An achiral NADH model compound, 1-propyl-1,4-dihydronicotinamide (PNAH (5)) exhibited both high regio- and enantioselectivities. The product selectivity reflects the change in molecular arrangement in the transition state of the reaction and reveals the relative importance of the parameters governing the molecular arrangement in the reaction.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号