首页 | 本学科首页   官方微博 | 高级检索  
     


Novel halogenated cyclopentasilylene-2,4-dienes via DFT
Authors:Mojgan Ayoubi-Chianeh  Mohamad Z. Kassaee
Affiliation:Department of Chemistry, Tarbiat Modares University, Tehran, Iran
Abstract:
In view of immense importance of silylenes and the fact that their properties undergo significant changes on substitution with halogens, here, we have used B3LYP/6-311++G** level of theory to access the effects of 1–4 halogens (X = F, Cl, Br, and I) on four unprecedented sets of cyclopentasilylene-2,4-dienes; with the following formulas: SiC4H3X ( 1 X ), SiC4H2X2 ( 2 X ), SiC4HX3 ( 3 X ), and SiC4X4 ( 4 X ). In going down from F to I, the singlet (s)-triplet (t) energy gap (ΔEs-t, a possible indication of stability), and band gap (ΔEH-L) decrease while nucleophilicity (N), chemical potential (μ), and proton affinity (PA) increase. The overall order of N, μ, and PA for each X is 2 X > 1 X > 3 X > 4 X . Precedence of 2 X over 1 X is attributed to the symmetric cross conjugation in the former. The highest and lowest N are shown by 2 I and 4 F . The trend of divalent angle (urn:x-wiley:00094536:media:jccs202000010:jccs202000010-math-0001) for each X is 4 X > 1 X > 3 X > 2 X . The results show that in going from electron withdrawing groups (EWGs) to electron donating groups (EDGs), the ΔEs-t and ΔEH-L decrease while N, μ, and PA increase. Also, rather high N of our scrutinized silylenes may suggest new promising ligands in organometallic chemistry.
Keywords:band gap  DFT  halogen  silylene  singlet-triplet energy gap  stability
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号