首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Coupling effects of high temperature and pressure on the decomposition mechanisms of 1,1-diamino-2,2-dinitroehethe crystal: Ab initio molecular dynamics simulations
Authors:Guolin Xiong  Weihua Zhu
Institution:Department of Chemistry, Institute for Computation in Molecular and Materials Science, School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing, China
Abstract:Recently, Dreger et al. experimentally investigated the phase diagram and decomposition of 1,1-diamino-2,2-dinitroethene (FOX-7) single crystal compressed hydrostatically up to 10 GPa and heated over a range of 293–750 K (J. Phys. Chem. C 2016 , 120, 11092–11098). As a continuation, we performed ab initio molecular dynamic simulations to study the initiation mechanisms and subsequent decomposition of FOX-7 at a temperature of 504 K (initial decomposition temperature) coupled with a pressure of 1–5 GPa, 604 K at 5GPa, and 704 K at 5 GPa. However, our two compressing ways are different: the former is static hydrostatical compression, while our way is dynamic compression. Our results indicate that the initial decomposition mechanism was dependent on the temperature but independent of the pressure. The initial decomposition step is the bimolecular intermolecular hydrogen transfer. The subsequent decomposition of FOX-7 is sensitive to both the temperature and pressure. At 504 K, the decomposition of FOX-7 was accelerated from 1 to 2 GPa and from 3 to 5 GPa but decelerated from 2 to 3 GPa. The temperature exhibits a positive effect on the decomposition. Overall, the temperature and pressure have great cooperative effects on the decomposition of FOX-7. Our study may provide new insight into understanding the initial mechanisms and decomposition reactions of energetic materials at relatively low temperatures coupled with different pressures in atomic detail.
Keywords:ab initio molecular dynamics  FOX-7 crystal  initial decomposition  high temperatures and high pressures
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号