首页 | 本学科首页   官方微博 | 高级检索  
     检索      


An investigation of nonadiabatic interactions in Cl(2Pj) + D2 via crossed-molecular-beam scattering
Authors:Parsons Bradley F  Chandler David W
Institution:Combustion Research Facility, Sandia National Laboratories, Livermore, California 94550, USA.
Abstract:We have determined limits on the cross section for both electronically nonadiabatic excitation and quenching in the Cl((2)P(j)) + D(2) system. Our experiment incorporates crossed-molecular-beam scattering with state-selective Cl((2)P(12,32)) detection and velocity-mapped ion imaging. By colliding atomic chlorine with D(2), we address the propensity for collisions that result in a change of the spin-orbit level of atomic chlorine either through electronically nonadiabatic spin-orbit excitation Cl((2)P(32)) + D(2)-->Cl(*)((2)P(12)) + D(2) or through electronically nonadiabatic spin-orbit quenching Cl(*)((2)P(12)) + D(2)-->Cl((2)P(32)) + D(2). In the first part of this report, we estimate an upper limit for the electronically nonadiabatic spin-orbit excitation cross section at a collision energy of 5.3 kcal/mol, which lies above the energy of the reaction barrier (4.9 kcal/mol). Our analysis and simulation of the experimental data determine an upper limit for the excitation cross section as sigma(NA)< or =0.012 A(2). In the second part of this paper we investigate the propensity for electronically nonadiabatic spin-orbit quenching of Cl(*) following a collision with D(2) or He. We perform these experiments at collision energies above and below the energy of the reaction barrier. By comparing the amount of scattered Cl(*) in our images to the amount of Cl(*) lost from the atomic beam we obtain the maximum cross section for electronically nonadiabatic quenching as sigma(NA)< or =15(-15) (+44) A(2) for a collision energy of 7.6 kcal/mol. Our experiments show the probability for electronically nonadiabatic quenching in Cl(*) + D(2) to be indistinguishable to that for the kinematically identical system of Cl(*) + He.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号