首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Poly(ethylene glycol) micro-patterns as environmentally sensitive template for selective or non-selective adsorption
Authors:Wang Bo  He Tao  Liu Lili  Gao Changyou
Institution:Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China.
Abstract:Poly(ethylene glycol) (PEG), a hydrophilic and repulsive polymer to non-specific adsorption, was stamped onto carboxylic acid-enriched polymer surfaces using the micro-contact printing technique. The patterns are stabilized via hydrogen bonds. Areas printed with PEG were then shown to be non-adsorbed with fluorescein isothiocyanate (FITC)-labeled dextran, while the poly(methacrylic acid) (PMAA) regions could via hydrogen bonding. Due to this contrast, well defined dextran patterns were obtained. Tuned with pH and temperature, the PEG molecules could be detached from the surfaces, erasing the template. Moreover, ionization of PMAA at higher pH induced an abrupt transition to an extended conformation, weakening the interactions between PMAA and dextran. Not only the dextran patterns lose their spatial selectivity, but also the overall adsorption amount is much lower. The pH sensitivity was in a quite narrow range, i.e. around pH 5. As the hydrogen bonds are also temperature sensitive, the attach points of PEG molecules on the surfaces disappeared at higher temperature. For poly(acrylic acid) (PAA) photografted surfaces, the pH sensitivity was more complicated due to the formation of the compact complexes of PEG and PAA molecules.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号