Shock wave interaction with porous plates |
| |
Authors: | Beric Skews |
| |
Affiliation: | (1) School of Mechanical, Industrial, and Aeronautical Engineering, University of the Witwatersrand, PO WITS, 2050 Johannesburg, South Africa |
| |
Abstract: | Previous detailed studies of the interaction of a shock wave with a perforated sheet considered the impact of a shock wave on a plate with regularly spaced slits giving area blockages of 60 and 67%, at various angles of incidence, and resulting in both regular and Mach reflection. The current work extends this study to a much wider variety of plate geometries. Blockage ratios of 20, 25, 33, 50, and 67 and inclinations of 45, 60, 75, and 90° to the shock wave were tested. Four different thicknesses of plate were tested at the same frontal blockage in order to assess the effects of gap guidance. Tests were conducted at two shock Mach numbers of 1.36 and 1.51 (inverse pressure ratios of 0.4 and 0.5). It is found that secondary reflected and transmitted waves appear due to the complex interactions within the grid gaps, and that the vortex pattern which is generated under the plate is also complex due to these interactions. The angle of the reflected shock, measured relative to the plate, decreases with plate blockage and the angle of inflow to the plate reduces with increasing blockage. By analysing the flow on the underside of the plate the pseudo-steady flow assumption is found to be a reasonable approximation. Both the pressure difference and the stagnation pressure loss across the plate are evaluated. It is found that over the range tested the plate thickness has a minimal effect. |
| |
Keywords: | Shock wave reflection Refraction Porous material Perforated plates Vortex sheets |
本文献已被 SpringerLink 等数据库收录! |
|