首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Finite element methods for symmetric hyperbolic equations
Authors:P Lesaint
Institution:1. Centre d'Etudes de Limeil, B. P. Nr. 27, F-94190, Villeneuve-Saint-Georges, France
Abstract:A finite difference method for the solution of symmetric positive differential equations has already been developped (Katsanis 4]). The finite difference solutions where shown to converge at the rateO(ith 1/2) ash approaches zero,h being the maximum distance between two adjacent mesh points. Here we try to get a better rate of convergence, using a Rayleigh Ritz Galerkin method. We first give a “weak” formulation of the equations, slightly different from the usual one (Friedrichs 3]), in order to take into account the boundary conditions. We define a finite dimensional subspaceV h ofH 1(Ω), in which we look for an approximate solutionu h . We show that when the exact solutionu is smooth enough, we get the error estimate: $$\left| {u - u_h } \right|L^2 (\Omega ) \leqq C\mathop {\inf }\limits_{v_h \in V_h } \left\{ {\left\| {u - v_h } \right\|H^1 (\Omega ) + \mathop {\sup }\limits_{w_h \in V_h } \frac{{\int\limits_\Gamma {\left| {u - v_h } \right|\left| {w_h } \right|d\Gamma } }}{{\left| {w_h } \right|L^2 (\Omega )}}} \right\}$$ where |·| denotes the Euclidean norm inR P . Thus, as is the case for elliptic or parabolic equations, the problem of estimating the error is reduced to questions in approximation theory. When those results are applied to finite element methods, with polynomial approximations of degree ≦k over eachn-simplex we obtain a rate of convergence ofO(h k) ash approaches zero,h being the supremum of the diameters of then-simplices.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号