首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Effect of critical fluctuations on adsorption of van der Waals fluid in a spherical cavity
Abstract:A recently proposed non-uniform fifth-order thermodynamic perturbation theory (TPT) is employed to investigate the adsorption of a hard core attractive Yukawa (HCAY) fluid in a spherical cavity. Extensive comparison with available simulation data indicate that the non-uniform fifth-order TPT is sufficiently reliable in calculating the density profiles of the HCAY fluid in the highly confining geometry, and generally is more accurate than a previous third-order?+?second-order perturbation density functional theory. The non-uniform fifth-order TPT is free from numerically solving an Ornstein–Zernike integral equation, and also free of any adjustable parameter; consequently, it can be applied to both supercritical and subcritical temperature regions. The non-uniform fifth-order TPT is employed to investigate critical adsorption of the HCYA fluid in a single spherical cavity – it is disclosed that the critical fluctuations near the critical point induce depletion adsorption – quantitative theoretical calculation on relationship between the critical depletion adsorption, parameters of coexistence bulk phase and the responsible external field is in agreement with qualitative physical analysis.
Keywords:liquids  adsorption  thermodynamic perturbation theory
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号