首页 | 本学科首页   官方微博 | 高级检索  
     


Polymer complexes: supramolecular modeling for determination and identification of the bond lengths in novel polymer complexes from their infrared spectra
Authors:Ahmed T. Mubarak  A. Z. El‐Sonbati  A. A. El‐Bindary  R. M. Issa  H. M. Kera
Abstract:Synthesis and characterization of allyl propenyl‐2‐(4‐derivatives phenylazo)butan‐3‐one (HLn) are described. The monomers obtained contain N?N and carbonyl functional groups in different positions with respect to the allyl group. This structural difference affects the stereochemical structure of the uranyl polymer complexes prepared by the direct reaction of uranyl acetate with the monomers. The polymer complexes are characterized by elemental analyses, 1H and 13C NMR, electronic and vibrational spectroscopy and other theoretical methods. The bonding sites of the hydrazone are deduced from IR and NMR spectra and each of the ligands were found to bond to the UO22+ ion in a bidentate fashion. The monomers obtained contain N?N and carbonyl functional groups in different positions with respect to the allyl group. IR spectra show that the allyl azo homopolymer (HLn) acts as a neutral bidentate ligand by coordinating via the two oxygen atom of the carbonyl group, thereby forming a six‐membered chelating ring. The υ3 frequency of UO22+ has been shown to be a good molecular probe for studying the coordinating power of the ligands. The υ3‐values of UO22+ from IR spectra have been used to calculate the force constant, FUO (in 10?8 N/Å) and the bond length RUO (in Å) of the U? O bond. We adopted a strategy based upon both theoretical and experimental investigations. The theoretical aspects are described in terms of the well‐known theory of 5d–4f transitions. The necessary structural data (coordination geometries and electronic structures) are determined from a framework for the modeling of novel polymer complexes. The Wilson, G. F. matrix method, Badger's formula and the Jones and El‐Sonbati equations were used to determine the stretching and interaction force constants from which the U? O bond distances were calculated. The bond distances of these complexes were also investigated. The effect of Hamett's constant is also discussed. Copyright © 2006 John Wiley & Sons, Ltd.
Keywords:supramolecular structures  UO22+ azopolymer complexes  McGlynn and Badger's formula  Jones and El‐Sonbati equations
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号