首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Theoretical investigation of electron transfer transition in tetracyanoethylene-contained organic complexes
Authors:Li Xiang-Yuan  Hu Chun-Xiu
Institution:College of Chemical Engineering, Sichuan University, Chengdu 610065, People's Republic of China. xyli@scu.edu.cn
Abstract:In this work, the authors use complete active space self-consistent field method to investigate the photoinduced charge-separated states and the electron transfer transition in complexes ethylene-tetracyanoethylene and tetramethylethylene-tetracyanoethylene. Geometries of isolated tetracyanoethylene, ethylene, and tetramethylethylene have been optimized. The ground state and the low-lying excited states of ethylene and tetracyanoethylene have been optimized. The state energies in the gas phase have been obtained and compared with the experimentally observed values. The torsion barrier of tetracyanoethylene has been investigated through the state energy calculation at different conformations. Attention has been particularly paid to the charge-separated states and the electron transfer transition of complexes. The stacked conformations of the donor-acceptor complexes have been chosen for the optimization of the ground and low-lying excited states. Equilibrium solvation has been considered by means of conductor-like screening model both in water and in dichloromethane. It has been found that the donor and tetracyanoethylene remain neutral in complexes in ground state (1)A(1) and in lowest triplet state (3)B(1), but charge separation appears in excited singlet state (1)B(1). Through the correction of nonequilibrium solvation energy based on the spherical cavity approximation, pi-->pi* electron transfer transition energies have been obtained. Compared with the experimental measurements in dichloromethane, the theoretical results in the same solvent are found higher by about 0.5 eV.
Keywords:charge‐separated state  donor–acceptor complex  solvent effect  electron transfer transition
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号