首页 | 本学科首页   官方微博 | 高级检索  
     


On Solving Nonconvex Optimization Problems by Reducing The Duality Gap
Authors:Hoang?Tuy  author-information"  >  author-information__contact u-icon-before"  >  mailto:htuy@math.ac.vn"   title="  htuy@math.ac.vn"   itemprop="  email"   data-track="  click"   data-track-action="  Email author"   data-track-label="  "  >Email author
Affiliation:(1) Institute of Mathematics, 18 Hoang Quoc Viet, 10307 Hanoi, Vietnam
Abstract:Lagrangian bounds, i.e. bounds computed by Lagrangian relaxation, have been used successfully in branch and bound bound methods for solving certain classes of nonconvex optimization problems by reducing the duality gap. We discuss this method for the class of partly linear and partly convex optimization problems and, incidentally, point out incorrect results in the recent literature on this subject.
Keywords:Branch and bound algorithm  Convergence conditions  Dual bound  Lagrangian bound  Partly convex programming  Partly linear
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号