首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Thermally activated escape rate for a Brownian particle in a double-well potential for all values of the dissipation
Authors:Kalmykov Yu P  Coffey W T  Titov S V
Institution:Groupe de Physique Moléculaire, MEPS, Université de Perpignan, 52, Avenue Paul Alduy, 66860 Perpignan Cedex, France. kalmykov@univ-perp.fr
Abstract:The translational Brownian motion in a (2-4) double-well potential is considered. The escape rate, the position correlation function and correlation time, and the generalized susceptibility are evaluated from the solution of the underlying Langevin equation by using the matrix-continued fraction method. The escape rate and the correlation time are compared with the Kramers theory of the escape rate of a Brownian particle from a potential well as extended by Mel'nikov and Meshkov J. Chem. Phys. 85, 1018 (1986)]. It is shown that in the low-temperature limit, the universal Mel'nikov and Meshkov expression for the escape rate provides a good estimate of both escape rate and inverse position correlation time for all values of the dissipation including the very low damping (VLD), very high damping (VHD), and turnover regimes. Moreover, for low barriers, where the Mel'nikov and Meshkov method is not applicable, analytic equations for the correlation time in the VLD and VHD limits are derived.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号