Determination of low analyte concentrations by near-infrared spectroscopy: effect of spectral pretreatments and estimation of multivariate detection limits |
| |
Authors: | Blanco Marcel Castillo Miguel Peinado Antonio Beneyto Rafael |
| |
Affiliation: | a Department of Chemistry, Faculty of Sciences, Universitat Autònoma de Barcelona, 08193 Bellaterra (Barcelona), Spain b Development and Quality Assurance Department, ICI Spain S.A. (Mevisa Site), Ctra Hostalric a Tossa km 1.8, 08495 Fogars de la Selva, Barcelona, Spain |
| |
Abstract: | Near infrared spectroscopy (NIRS) was used in combination with partial least squares (PLS) calibration to determine low concentrated analytes. The effect of the orthogonal signal correction (OSC) and net analyte signal (NAS) pretreatments on the models obtained at concentrations of analyte near its detection limit was studied. Both pretreatments were found to accurately resolve the analyte signal and allow the construction of PLS models from a reduced number of factors; however, they provided no substantial advantage in terms of %RSE for the prediction samples. Multiple methodologies for the estimation of detection limits could be found in the bibliography. Nevertheless, detection limits were determined by a multivariate method based on the sample-specific standard error for PLS regression, and compared with the univariate method endorsed by ISO 11483. The two methods gave similar results, both being effective for the intended purpose of estimating detection limits for PLS models. Although OSC and NAS allow isolating the analyte signal from the matrix signal, they provide no substantial improvement in terms of detection limits. The proposed method was used to the determine 2-ethylhexanol at concentrations from 20 to 1600 ppm in an industrial ester. The detection limit obtained, round 100 ppm, testifies to the ability of NIR spectroscopy to detect low concentrated analytes. |
| |
Keywords: | Near infrared spectroscopy Detection limit Orthogonal signal correction Net analyte signal Low concentration analytes |
本文献已被 ScienceDirect PubMed 等数据库收录! |
|