首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Laser-induced breakdown spectroscopy in analysis of Al3+ liquid droplets: on-line preconcentration by use of flow-injection manifold
Authors:Huang Jer-Shing  Liu Hsiao-Tsui  Lin King-Chuen
Institution:a Department of Chemistry, National Taiwan University, Taipei 106, Taiwan
b Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei 106, Taiwan
Abstract:Laser-induced breakdown spectroscopy (LIBS), combined with a flow-injection system, is demonstrated to analyze liquid droplets of aluminum salt, as generated with an electrospray ionization device. The spray needle also serves as the anode, through which the analyte solution is spread toward the other metal base as the cathode. Along the passage of the FI manifold, the Al-sample loading speed is controlled at 0.15 mL min−1, restricted to the small diameter of the spray needle, and the loading volume amounts to 0.1 mL. The metal ion is retained in a cation-exchange resin microcolumn immobilized with Chromotrope 2B chelating agent, followed by elution with a 0.5 M HCl solution into LIBS. Upon laser irradiation at the preconcentrated liquid droplets, the time-resolved laser-induced breakdown (LIB) emission and plasma-induced current signals are acquired concurrently on a single-shot basis. The area under the LIB/current distribution increases in linear proportion as the concentration of the sample solution increases. The detection limit thus obtained can reach 1.5 mg L−1, about an order of magnitude lower than those achieved previously using single-laser ablation without involvement of preconcentration. The linear dynamic range is more than two orders of magnitude.
Keywords:Laser-induced breakdown spectroscopy  Preconcentration  Flow-injection: Liquid analysis
本文献已被 ScienceDirect PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号