首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Saccharide Sensing with Molecular Receptors Based on Boronic Acid
Authors:Tony D James  K R A Samankumara Sandanayake  Seiji Shinkai
Abstract:The lock-and-key principle of natural systems is based on complex interactions like hydrogen bonding. Many synthetic systems that attempt to mimic natural systems have also used hydrogen bonding as the main binding force and have met with great success in non-hydrogen-bonding solvents that do not compete with the guest for the binding pocket. In contrast, natural systems function in water, a very competitive solvent. Synthetic hydrogen-bonding systems may yet evolve to be successful in water. If this transition can not be made, synthetic answers can nevertheless take inspiration from nature without slavishly following the blue print. This is not an attempt to reinvent the “lock”: a new locking mechanism merely replaces the existing one. The inspiration might be the view of the hydrogen bond as an easily reversible “covalent” bond. Screening the literature we rediscovered boronic acids, which have been known for over 100 years. Conveniently, boronic acids rapidly and reversibly form cyclic esters with diols in basic aqueous media. Saccharides and other related “keys” contain a contiguous array of cyclic alcohols. In this work we hope to demonstrate that saccharide “keys” and boronic acid “locks” can open the door to a new and exciting field of research.
Keywords:boronic acids  fluorescence  electron transfer  saccharides  molecular recognition  Boronic acids  Carbohydrates  Electron transfer  Fluorescence  Molecular recognition
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号