首页 | 本学科首页   官方微博 | 高级检索  
     


Combinatorial Synthesis of Small Organic Molecules
Authors:Friedhelm Balkenhohl,Christoph von dem Bussche-Hü  nnefeld,Annegret Lansky,Christian Zechel
Abstract:Combinatorial synthesis has developed within a few years from a laboratory curiosity to a method that is taken seriously in drug research. Rapid progress in molecular biology and the resulting ability to determine the activity of new substances extremely efficiently have led to a change in paradigm for the synthesis of test compounds: in addition to the conventional procedure of synthesizing one substance after another, new methods allowing simultaneous creation of many structurally defined substances are becoming increasingly important. A characteristic of combinatorial synthesis is that a reaction is performed with many synthetic building blocks at once—in parallel or in a mixture— rather than with just one building block. All possible combinations are formed in each step, so that a large number of products, a so-called library, is obtained from only a few reactants. Several methods have been developed for combinatorial synthesis of small organic molecules, based on research into peptide library synthesis: single substances are produced by highly automated parallel syntheses, and special techniques enable targeted synthesis of mixtures with defined components. Many structures can be obtained by combinatorial synthesis, and the size of the libraries created ranges from a few individual compounds to many thousand substances in mixtures. This article gives an overview of the combinatorial syntheses of small organic molecules reported to date, performed both in solution and on a solid support. In addition, different techniques for identification of active compounds in mixtures are presented, together with ways to automate syntheses and process the large amounts of data produced. An overview of pionering companies active in this area is also given. The final outlook attempts to predict the future development of this exponentially growing area and the influence of this new thinking in other areas of chemistry.
Keywords:automation  combinatorial chemistry  compound libraries  solid-phase synthesis  molecular diversity  Combinatorial chemistry  Combinatorial chemistry  Molecular diversity  Solid-phase synthesis
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号