Abstract: | The population of the conformations obtained by rotation around the C(2)? N and the N? C(O) bonds of AllNAc, GlcNAc, and GlcNMeAc derivatives was investigated by 1H-NMR spectroscopy. The AllNAc-derived α-D -and β-D -pyranosides 4–7 , the AllNAc diazirine 16 , and the GlcNAc-derived axial anomers α-D - 8–10 prefer the (Z)-anti-conformation. A significant population of the (Z)-syn-conformer in the (Z)-syn/(Z)-anti-equilibrium for the equatorial anomers β-D - 8–10 and the GlcNAc diazirine 17 was evidenced by an upfield shift of H? C(2), downfield shifts of H? C(1) and H? C(3), and by NOE measurements. The population of the (Z)-syn-conformation depends on the substituent at C(1) and is highest for the hexafluoroisopropyl glycoside. The population of the (Z)-syn-conformation of β-D - 14 decreases with increasing polarity of the solvent, but a substantial population is still observed for solutions in D2O. Whereas the α-D -anomers of the hemiacetal 22 and the methyl glycoside 21 prefer the (Z)-anti-conformation in D2O solution, the corresponding β-D -anomers are mixtures of the (Z)-anti-and (Z)-syn-conformers. The diazirine 17 self-associates in CD2Cl2 solution at concentrations above 0.005M at low temperatures. The axial anomers of the GlcNMeAc derivatives α-D - 26–28 are 2:1 to 3:1 mixtures of (Z)-anti-and (E)-anti-conformers, whereas the corresponding β-D -glycosides are ca. 1:3:6 mixtures of (Z)-syn-, (Z)-anti-, and (E)-anti-conformers. |