Abstract: | Crystal Structures of the Fluorochloroplatinates(IV) cis-[(C5H5N)2CH2][PtF4Cl2], trans-[(C5H5N)2CH2][PtF4Cl2] · H2O, and [(C5H5N)2CH2][PtF5Cl] The complex ions cis-[PtF4Cl2]2?, trans-[PtF4Cl2]2? and [PtF5Cl]2? have been synthesized by stereoselective ligand exchange reactions utilizing the trans effect and are separated by ion exchange chromatography on diethylaminoethyl cellulose. These anions form stable AB-type salts with the doubly charged cation dipyridiniomethane, [(C5H5N)2CH2]2+. X-ray structure determinations on single crystals of cis-[(C5H5N)2CH2][PtF4Cl2] ( 1 ) (monoclinic, space group P21/n with a = 10.379(10), b = 9.635(2), c = 13.738(2) Å, β = 99.142(10)°, Z = 4), trans-[(C5H5N)2CH2][PtF4Cl2] · H2O ( 2 ) (triclinic, space group P1 with a = 7.757(4), b = 10.059(7), c = 10.408(6) Å, α = 82.49(5), β = 68.92(4), γ = 75.46(4)°, Z = 2) and [(C5H5N)2CH2][PtF5Cl] ( 3 ) (orthorhombic, space group Pnma with a = 10.394(3), b = 13.320(2), c = 9.2694(10) Å, Z = 4), reveal the perfect ordering of the anion sublattice. The stronger trans influence of Cl compared with F is observed in asymmetric axes $ {rm F}^ bullet $? Pt? Cl′. The bond lengths Pt? $ {rm F}^ bullet $ are 0.026 Å (1.4%) longer and the Pt? Cl′ distances are 0.078 Å (3,3%) shorter in comparison with those of symmetrically coordinated axes. The weakening of the Pt? $ {rm F}^ bullet $ bond and the strengthening of the Pt? Cl′ bond is better recognizable from shifts of the stretching vibrations by 8% to lower and by 13% to higher frequencies, respectively. Correspondingly, the valence force constants are found to be 15% lower and 22% higher. The trans influence is observed most distinctly in the 19F-nmr spectra exhibiting the coupling constant 1J($ {rm F}^ bullet $Pt) to be 29% smaller than 1J(FPt). |