首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Identification of vortex motions in turbulent mixing of choked jets
Authors:M R Davis
Institution:(1) Dept. of Civil and Mechanical Engineering, University of Tasmania, Box 252 C G.P.O., 7001 Hobart, Tasmania, Australia
Abstract:A specially adapted schlieren system is used to generate fluctuating signals which respond strongly to large scale coherent components of a turbulent mixing jet flow and which have a relatively reduced response to random disturbances. The schlieren signals also provide a direct indication of the presence of vortex-like structures in the turbulent mixing layers by virtue of the phase relationship of the schlieren signals to the pressure field. This system gives a clear resolution of the fluctuating periodic effects associated with vortex structures in the flow from a choked convergent nozzle. It has thus been possible to determine that vortex-like eddies are associated with the feedback screech mechanism, and also generate periodic disturbances due to their passage through the diamond shaped wave structure in the flow. The regular disturbances in the flow move at 0.77 of the fully expanded flow velocity. Phase spectral observations demonstrate clearly the vortex like structure of coherent disturbances in the flow by virtue of the quadrature phase relation between the schlieren and microphone signals. Movement of the sensing microphone in the pressure field external to the flow shows disturbance propagation at the acoustic velocity, and also shows that disturbances at Strouhal numbers above 0.7 emanating from the inner mixing zone can be identified by an additional time delay to reach the microphone and only influence the microphone when it is located downstream of the flow sensing schlieren system due to confinement of pressure disturbances within Mach cones of the flow.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号