首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Oxidation state changes and electron flow in enzymatic catalysis and electrocatalysis through Wannier-function analysis
Authors:Sit Patrick H-L  Zipoli Federico  Chen Jia  Car Roberto  Cohen Morrel H  Selloni Annabella
Institution:Department of Chemistry, Princeton University, Princeton, New Jersey 08544, USA. hsit@princeton.edu
Abstract:In catalysis by metalloenzymes and in electrocatalysis by clusters related in structure and composition to the active components of such enzymes transition-metal atoms can play a central role in the catalyzed redox reactions. Changes to their oxidation states (OSs) are critical for understanding the reactions. The OS is a local property and we introduce a new, generally useful local method for determining OSs, their changes, and the associated bonding changes and electron flow. The method is based on computing optimally localized orbitals (OLOs). With this method, we analyze two cases, superoxide reductase (SOR) and a proposed hydrogen-producing model electrocatalyst FeS(2)]/FeFe](P), a modification of the active site of the diiron hydrogenase enzymes. Both utilize an under-coordinated Fe site where a one-electron reduction (for SOR) or a two-electron reduction (for FeFe](P)) of the substrate occurs. We obtain the oxidation states of the Fe atoms and of their critical ligands, the changes of the bonds to those ligands, and the electron flow during the catalytic cycle, thereby demonstrating that OLOs constitute a powerful interpretive tool for unraveling reaction mechanisms by first-principles computations.
Keywords:ab initio calculations  density functional calculations  oxidation states  redox chemistry  Wannier functions
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号