首页 | 本学科首页   官方微博 | 高级检索  
     


Investigations on membrane perturbation by chrysin and its copper complex using self-assembled lipid bilayers
Authors:Selvaraj Stalin  Krishnaswamy Sridharan  Devashya Venkappayya  Sethuraman Swaminathan  Krishnan Uma Maheswari
Affiliation:Centre for Nanotechnology and Advanced Biomaterials (CeNTAB), School of Chemical and Biotechnology, SASTRA University, Thanjavur 613 401, Tamil Nadu, India.
Abstract:The mechanism of membrane interactions of most of the flavonoids in the presence of transition-metal ions is not well-understood. To understand this phenomenon, the present work aims to synthesize a chrysin-copper complex at room temperature and investigate its influence on the electrical characteristics of planar lipid bilayers. The chrysin-copper complex was characterized by various spectroscopic techniques and was found to have a metal/ligand ratio of 1:2 and of cationic nature. Its ability to inhibit 1,1'-diphenyl-2-picrylhydrazyl (DPPH) radicals was not significant at alkaline pH because of the involvement of the 5-hydroxy group in coordination with the copper ion compared to its parent flavonoid, chrysin (p < 0.05). The addition of different concentrations (20-100 μM) of chrysin and the chrysin-copper complex to lipid bilayers decreases the resistance, indicating a strong surface interaction and partial insertion into the bilayer near the lipid-water interface. The dose-dependent reduction in resistance as a result of the chrysin-copper complex is more pronounced in comparison to chrysin, implying that the bulkier and charged chrysin-copper complex displays greater ability to distort the lipid bilayer architecture. These conclusions were further confirmed by curcumin-loaded liposome permeabilization studies, where both chrysin and its Cu(II) complex increased the fluidity in a dose-dependent manner. However, the extent of fluidization by the chrysin-copper complex was nearly twice that of chrysin alone (p < 0.05). The implications of these surface interactions of chrysin and its copper complex on cell membranes were studied using a hypotonic hemolysis assay. Our results demonstrate that, at low concentrations (20 μM), the chrysin-copper complex exhibited twice the protection against hypotonic stress-induced membrane disruption when compared to chrysin. However, this stabilizing effect gradually decreased and became comparable to chrysin at higher concentrations. This biphasic behavior of the chrysin-copper complex could further be explored for therapeutic applications.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号