A virtual optical probe based on evanescent wave interference |
| |
Authors: | Sun Li-Qun Wang Ji Hong Tao Tian Qian |
| |
Affiliation: | Department of Precision Instruments, State Key Laboratory of Precision Measurement Technology and Instruments, Tsinghua University, Beijing 100084, China |
| |
Abstract: | A virtual probe is a novel immaterial tip based on the near-field evanescent wave interference and small aperture diffraction, which can be used in near-field high-density optical data storage, nano-lithography, near-field optical imaging and spectral detection, near-field optical manipulation of nano-scale specimen, etc. In this paper, the formation mechanism of the virtual probe is analysed, the evanescent wave interference discussed theoretically, and the sidelobe suppression by small aperture is simulated by the three-dimensional finite-difference time-domain method. The simulation results of the optical distribution of the near-field virtual probe reveal that the transmission efficiency of the virtual probe is 102-104 times higher than that of the nano-aperture metal-coated fibre probe widely used in near-field optical systems. The full width at half maximum of the peak, in other words, the size of virtual probe, is constant whatever the distance in a certain range so that the critical nano-separation control in the near-field system can be relaxed. We give an example of the application of the virtual probe in ultrahigh-density optical data storage. |
| |
Keywords: | near-field optics evanescent wave interference virtual probe finite-difference time-domain method |
本文献已被 维普 等数据库收录! |
| 点击此处可从《中国物理》浏览原始摘要信息 |
|
点击此处可从《中国物理》下载免费的PDF全文 |
|