首页 | 本学科首页   官方微博 | 高级检索  
     

基于变分高斯混合模型的图像分割算法
引用本文:张媛媛,钟意伟. 基于变分高斯混合模型的图像分割算法[J]. 宁波大学学报(理工版), 2014, 0(1): 23-28
作者姓名:张媛媛  钟意伟
作者单位:(宁波大学 信息科学与工程学院, 浙江 宁波 315211)
基金项目:Supported by the National Natural Science Foundation of China (61175026)i Discipline Project of Ningbo University (XKL09154).
摘    要:提出了一种基于变分推断的高斯混合模型的图像分割算法. 该算法首先用贝叶斯混合高斯模型对图像的特征进行建模, 并针对模型的参数学习问题, 利用变分推断算法估计模型的参数及其后验概率; 这种方法比采样法的计算量更少, 而且能够根据图像数据自动优化混合个数, 实现了模型的自动选择. 最后, 该算法在Berkeley的自然图像集上进行的实验结果与经典的图像分割算法进行了比较, 结果表明此方法得到的图像分割结果精度较高, 具有较好的性能.

关 键 词:图像分割  变分推断  高斯混合模型  期望最大化算法

Image Segmentation via Variational Mixture of Gaussions
ZHANG Yuan-yuan,ZHONG Yi-wei. Image Segmentation via Variational Mixture of Gaussions[J]. Journal of Ningbo University(Natural Science and Engineering Edition), 2014, 0(1): 23-28
Authors:ZHANG Yuan-yuan  ZHONG Yi-wei
Affiliation:( Faculty of Information Science and Technology, Ningbo University, Ningbo 315211, China )
Abstract:Gaussian mixture model (GMM) has been effectively used in image segmentation. In this case, the features of an image are described by a mixture model with K different components. However, how to choose the number of mixture components K and estimate model parameters are still short of solutions. Current algorithms such as maximum likelihood and sampling methods are known for their own limitations. So we present an alternative algorithm based on Bayesian variational method and apply it in image segmentation. This method works at less computational cost than sampling methods, and can also naturally handle the model selection problem. In the model's iterative process, the algorithm can automatically determine the number of mixture components in view of the data collected. By comparing our method against other classical segmentation methods on natural images acquired from Berkeley Segmentation Data Set, it suggests that our method provides better performance on image segmentation.
Keywords:image segmentation  variational inference  Gaussian mixture models  exoectation-maximization
本文献已被 CNKI 维普 等数据库收录!
点击此处可从《宁波大学学报(理工版)》浏览原始摘要信息
点击此处可从《宁波大学学报(理工版)》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号