首页 | 本学科首页   官方微博 | 高级检索  
     检索      


The basic principle of radioluminescence dating and a localized transition model
Authors:T Trautmann  M R Krbetschek  A Dietrich  W Stolz
Institution:

a TU Bergakademie Freiberg, Institute of Applied Physics, Bernhard-von-Cotta-Street 4, D-09596 Freiberg, Germany

b Saxon Academy of Science, Quaternary Geochronology Section, Freiberg Bernhard-von-Cotta-Street 4, D-09596 Freiberg, Germany

Abstract:The IR signal of the radioluminescence of potassium feldspars is caused by the luminescent transition of electrons into optically active traps. This allows the direct determination of the density of trapped electrons and therefore a method of sediment dating with higher precision and accuracy than conventional luminescence dating. The principle behind it and its advantages are presented, in particular the fact that it is a real single aliquot dating technique. The explanation of both radioluminescence and IR-optically stimulated luminescence (IR-OSL) in terms of a band model is possible after the introduction of a localized transition. In contrast to previous models, the process of dose accumulation in the sediment was simulated using a dose rate as low as in real sediments. Preheat experiments indicate that the recombination centres are the unstable part of the luminescence process. The parameters of these centres are equal to those previously assigned to thermally unstable electron traps. Furthermore, the sources of systematic errors in conventional IR-OSL dating are discussed.
Keywords:Radioluminescence  Single grain dating  Localized transition
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号