首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Numerical simulation of electrohydrodynamic (EHD) atomization
Institution:1. Department of Mechanical Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 120-749, Republic of Korea;2. School of Mechanical & System Design Engineering, Hongik University, 94 Wausan-ro, Mapo-gu, Seoul 121-791, Republic of Korea
Abstract:The objective of the present work was to use a commercial Computational Fluid Dynamics (CFD) code to simulate the electrohydrodynamic (EHD) atomization process. Although the physics of the atomization and cone formation has been discussed in numerous publications, a comprehensive theory has not been presented. Some of the previous approaches are discussed below. A CFD model can give a unique capability to describe and simulate the liquid cone formation and atomization. The approach in this work was to simultaneously solve the coupled (EHD) and electrostatic equations. The heat conduction equation, solved by the CFD solver, has been modified to solve the electrostatic field equations. From the electrostatic field, the electric body forces have been determined and included in the Navier–Stokes equations. The model does not include any current. The key liquid property for the coupling is the permittivity. The predicted velocity fields for heptane and ethanol and the operating window of heptane were found to be consistent with published results. The model does not include a droplet break-up model. If the jet is cylindrical, the droplet size can be calculated from the jet diameter. The droplet size of ethanol was predicted and compared well with experiments.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号