首页 | 本学科首页   官方微博 | 高级检索  
     


Light absorption modeling of ordered bulk heterojunction organic solar cells
Authors:P. Granero  V.S. Balderrama  J. Ferré-Borrull  J. Pallarès  L.F. Marsal
Affiliation:Nano-electronic and Photonic Systems – NePhoS, Departament d''Enginyeria Electrónica, Eléctrica i Automàtica, Universitat Rovira i Virgili, Av. Països Catalans 26, 43007 Tarragona, Spain
Abstract:Ordered bulk heterojunction organic solar cells are devices that combine the advantages of the planar bilayer and the bulk heterojunction architectures. They offer uninterrupted pathways to electrodes for effective charge collection and an extended Donor–Acceptor interface for efficient exciton dissociation. Additionally, this interface can also be a potential approach to increase photon absorption by light trapping. Light absorption and charge carrier generation of organic nanostructures are studied by means of finite-element modeling for a wide range of structuring widths, periods and heights for poly(3-hexylthiophene):1-(3-methoxycarbonyl)-propyl-1-phenyl-(6,6)C61 (P3HT:PCBM) structures. Results show an increase in light absorption at certain wavelengths in the P3HT region with respect to an equivalent planar bilayer model. This increase can be attributed to two phenomena: for the smallest periods the structures behaves like an effective medium, while for periods of the order of magnitude of the incident light wavelength there is light trapping. The maximum increase in absorption was achieved for a 250 nm-width and 500 nm periodicity structure with a height of 40 nm. Exciton diffusion has also been studied to evaluate the effective amount of absorbed light contributing to photocurrent. In this case, best results correspond to the smallest sizes (1.25–12.5 nm-width) for all the considered heights, achieving an increment in the photocurrent up to more than a factor 6 if compared with that of the reference planar bilayer device. This study can be used to optimize our devices, which are achieved via nanoporous anodic alumina templates.
Keywords:Organic solar cells  Ordered bulk heterojunction  Interdigitated  Modeling  Photovoltaics
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号