首页 | 本学科首页   官方微博 | 高级检索  
     


Charge transport in polythiophene:fullerene:nanotube bulk heterojunction photovoltaic devices investigated by impedance spectroscopy
Authors:Arun Tej Mallajosyula  S. Sundar Kumar Iyer  Baquer Mazhari
Affiliation:Department of Electrical Engineering and Samtel Centre for Display Technologies (SCDT), Indian Institute of Technology Kanpur, Kanpur 208016, India
Abstract:P3HT:PCBM bulk heterojunction devices incorporating SWNTs, which are predominantly metallic in character, have been analyzed using impedance spectroscopy to understand the effect of SWNTs on their charge carrier transport properties. SWNTs reduce the effective lifetime of injected charge carriers. Frequency dependence of capacitance and conductance of P3HT:PCBM devices show monotonic variations without any clear peak positions. Simulations of the complex admittance of the P3HT:PCBM devices under trap free space charge limited current within the framework of Scher–Montrol theory are used to qualitatively show that such characteristics are a signature of charge transport which is highly dispersive in nature. The position of peak τpeak in the imaginary part of impedance Im(Z), which is essentially same as the first transition frequency of Cole–Cole plot, has a direct relation with the effective dc mobility of charge carriers which varies with dispersion parameters. Using the dc mobility values and the voltage variation of peak frequency of Im(Z), the ratio of τdc to τpeak has been calculated. The magnitude of this ratio is indicative of the degree of dispersiveness in transport. It has been shown that, SWNTs at low concentrations tend to reduce the dispersiveness in charge transport.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号