首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Deeply bound cold caesium molecules formed after 0(-)(g) resonant coupling
Authors:Lignier H  Fioretti A  Horchani R  Drag C  Bouloufa N  Allegrini M  Dulieu O  Pruvost L  Pillet P  Comparat D
Institution:Laboratoire Aimé Cotton, CNRS, Univ. Paris Sud, bat. 505, Campus d'Orsay, 91405, Orsay Cedex, France. andrea.fioretti@lac.u-psud.fr.
Abstract:Translationally cold caesium molecules are created by photoassociation below the 6s + 6p(1/2) excited state and selectively detected by resonance enhanced two photon ionization (RE2PI). A series of excited vibrational levels belonging to the 0(-)(g) symmetry is identified. The regular progression of the vibrational spacings and of the rotational constants of the 0(-)(g) (6s + 6p(1/2)) levels is strongly altered in two energy domains. These deviations are interpreted in terms of resonant coupling with deeply bound energy levels of two upper 0(-)(g) states dissociating into the 6s + 6p(3/2) and 6s + 5d(3/2) asymptotes. A theoretical model is proposed to explain the coupling and a quantum defect analysis of the perturbed level position is performed. Moreover, the resonant coupling changes dramatically the spontaneous decay products of the photoexcited molecules, strongly enhancing the decay into deeply bound levels of the a(3)Σ(+)(u) triplet state and of the X(1)Σ(+)(g) ground state. These results may be relevant when conceiving population transferring schemes in cold molecule systems.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号