首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Combustion and stabilization characteristics of a branched flame under Helmholtz-type excitations
Authors:Chao Yei-Chin  Hsu Hung-Wei  Chen Guan-Bang  Tseng Zhao-Hway
Institution:(1) Institute of Aeronautics and Astronautics National Cheng Kung University, Tainan Taiwan, 701 ROC e-mail: ycchao@mail.ncku.edu.tw Tel.: +886-6-2757575 ext. 63690; Fax: +886-6-2389940, CN
Abstract: The combustion and pollution characteristics of the newly rediscovered “branched flame” are experimentally investigated using a Helmholtz-type excitation. Under specific excitation conditions, high-amplitude Helmholtz excitation induces side jet ejection, which leads to a branched flame. Intense combustion and enhanced heat transfer due to strong oscillation of the flame and hot gases of the branched flame increase the heating effectiveness and fuel saving. Strong velocity oscillation results in accumulation of jet fluid ahead of the ring structure for generation of the side jet. In the side-jet evolution, the strong entrainment of the ring vortex in the initial stages followed by the early growth of the streamwise vortical structures greatly shortens the route to mixing transition of fuel and air in the upstream region of the flame. This enhanced premixing process of the side jet leading to high F probability, which is defined as the probability of the presence of a premixture of fuel and air with concentration within the flammability limits, and low strain rate has significant implications for the stabilization of the branched flame. NOx emission indices for the branched flames can be 30% higher and CO emission indices 50% lower than the unexcited case. Received: 5 June 2000 / Accepted: 21 March 2001
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号