首页 | 本学科首页   官方微博 | 高级检索  
     


The line shapes of the water proton resonances of red blood cells containing carbonyl hemoglobin, deoxyhemoglobin, and methemoglobin: implications for the interpretation of proton MRI at fields of 1.5 T and below
Authors:N A Matwiyoff  C Gasparovic  R Mazurchuk  G Matwiyoff
Affiliation:Center for Non-Invasive Diagnosis, University of New Mexico School of Medicine, Albuquerque 87131.
Abstract:The 300 MHz (7 T) water proton resonances of suspensions of red blood cells containing paramagnetic deoxyhemoglobin or methemoglobin can be resolved into two broad lines assignable to intra- and extracellular water which undergoes rapid T2 relaxation by diffusion in magnetic field gradients induced by the intracellular paramagnets. The width of the resolved lines allowed an estimate of the maximum contribution that diffusion makes to T2 relaxation at 7 T. The dependence of the diffusion contribution on the square of the strength of the static magnetic field suggest that diffusion makes a small contribution to water proton T2 relaxation at 1.5 T compared to 7 T, and a negligible one at 0.5 T in early and intermediate hematomas containing deoxyhemoglobin or methemoglobin in intact red blood cells. At the lower field strengths, water proton T2 relaxation is apparently dominated by the rapid chemical exchange (mean lifetime tau = 10 msec) between the intra- and extracellular environments.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号