首页 | 本学科首页   官方微博 | 高级检索  
     检索      

BiOBr/g-C3N4 S型异质结无H2O2光-自芬顿高效催化降解RhB
引用本文:章辉,程丽青,胡明玥,李明宇,郑健飞,辛思甜,方彩红,陈恒,杨毅琼,聂龙辉.BiOBr/g-C3N4 S型异质结无H2O2光-自芬顿高效催化降解RhB[J].无机化学学报,2013,29(18).
作者姓名:章辉  程丽青  胡明玥  李明宇  郑健飞  辛思甜  方彩红  陈恒  杨毅琼  聂龙辉
作者单位:湖北工业大学材料与化学工程学院, 武汉 430068;湖北工业大学材料与化学工程学院, 武汉 430068;新材料与绿色制造引智创新示范基地, 武汉 430068
基金项目:国家自然科学基金(No.51572074)、毒品分析及禁毒技术公安部重点实验室开放课题(No.YNPL-B2021002)和大学生创新创业项目(No.202210500063)资助。
摘    要:通过焙烧-超声混合法成功地制备了BiOBr/g-C3N4 S型异质结复合光催化剂。采用多种表征手段对样品物理属性进行了表征,包括X射线多晶粉末衍射仪(XRD)、扫描电子显微镜(SEM)、X射线光电子能谱(XPS)、紫外可见漫反射光谱(UV-VisDRS)。研究了所制备样品有/无Fe3+的光-自芬顿催化/光催化降解罗丹明B (RhB)性能。通过捕获实验确定了光催化反应中的主要活性物种,提出了光-自芬顿反应的降解机理。研究结果表明,BiOBr/g-C3N4 S型异质结能原位生成H2O2,添加Fe3+后,H2O2被原位活化成活性物种且光生电流和载流子分离效率获得显著提高。该光-自芬顿过程能高效降解RhB,其反应速率常数为0.208 min-1,约为无Fe3+光催化反应速率常数的5.3倍,在光-自芬顿循环使用过程中表现出良好的稳定性。Fe3+的加入促进了光生电荷的分离和H2O2的活化,超氧阴离子自由基(·O2-)、空穴和羟基是光-自芬顿催化过程中的主要活性物种,且·O2-作用更大。

关 键 词:BiOBr/g-C3N4  S型异质结  光-自芬顿反应  多相催化  催化机理
收稿时间:2023/3/26 0:00:00
修稿时间:2023/10/9 0:00:00

Efficient degradation of RhB over BiOBr/g-C3N4 S-scheme heterojunction by a H2O2-free photo-self-Fenton catalysis
ZHANG Hui,CHENG Li-Qing,HU Ming-Yue,LI Ming-Yu,ZHENG Jian-Fei,XIN Si-Tian,FANG Cai-Hong,CHEN Heng,YANG Yi-Qiong,NIE Long-Hui.Efficient degradation of RhB over BiOBr/g-C3N4 S-scheme heterojunction by a H2O2-free photo-self-Fenton catalysis[J].Chinese Journal of Inorganic Chemistry,2013,29(18).
Authors:ZHANG Hui  CHENG Li-Qing  HU Ming-Yue  LI Ming-Yu  ZHENG Jian-Fei  XIN Si-Tian  FANG Cai-Hong  CHEN Heng  YANG Yi-Qiong  NIE Long-Hui
Institution:School of Material and Chemistry Engineering, Hubei University of Technology, Wuhan 430068, China; School of Material and Chemistry Engineering, Hubei University of Technology, Wuhan 430068, China;New Materials and Green Manufacturing Talent Introduction and Innovation Demonstration Base, Wuhan 430068, China
Abstract:The fabrication of the BiOBr/g-C3N4 S-scheme heterojunction is an effective way to improve photocatalytic activity. Yet, its photocatalytic activity is expected to further improve, and its photo-Fenton catalytic activity for pollutant degradation in the absence of H2O2 has not been investigated up to now. In this work, a BiOBr/g-C3N4 S-scheme heterojunction photocatalyst was successfully prepared by a calcination-ultrasonic mixing method. Herein, its photo-self-Fenton catalytic activity was investigated for the first time in the absence of H2O2. The physical properties of the samples were characterized by X-ray polycrystalline powder diffractometer (XRD), scanning electron microscope (SEM), X-ray photoelectron spectroscopy (XPS), ultraviolet-visible diffuse reflectance spectroscopy (UV-Vis DRS). Photocatalytic and photo-self-Fenton catalytic degradation of rhodamine B (RhB) were studied over BiOBr/g-C3N4 S-scheme heterojunction without/with Fe3+ in the absence of H2O2, respectively. The main active species in the photo-self-Fenton catalytic reaction were determined by capturing experiments, and the degradation mechanism of the photo-self-Fenton catalysis was proposed. The results showed that H2O2 could be formed in situ over the BiOBr/g-C3N4 S-scheme heterojunction under visible-light irradiation. The photogenerated current and the separation efficiency of photo-generated carriers can be greatly improved in the presence of Fe3+ over BiOBr/g-C3N4 S-scheme heterojunction, resulting in the enhancement of photocatalytic efficiency for RhB degradation in the photo-self-Fenton process than in the photocatalytic reaction without Fe3+. The reaction rate constant of photo-self-Fenton over BiOBr/g-C3N4 S-scheme heterojunction with Fe3+ was 0.208 min-1, which was about 5.3 times that of photocatalysis without Fe3+. It also showed good stability in the recycling experiment. The addition of Fe3+ promotes the separation of photogenerated charges and the activation of generated H2O2 by the Fe2+/Fe3+ redox cycle. The results of capturing experiments show that superoxide anion radicals (·O2-) and holes (h+) are found the main active species, and ·O2- plays a more important role in photo-self-Fenton catalysis.
Keywords:BiOBr/g-C3N4  S-scheme heterojunction  photo-self-Fenton reaction  heterogenerous catalysis  catalytic mechanism
点击此处可从《无机化学学报》浏览原始摘要信息
点击此处可从《无机化学学报》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号