首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Ultraprecise 3D Printed Graphene Aerogel Microlattices on Tape for Micro Sensors and E-Skin
Authors:Qian Chen  Junting Shen  Diana Estevez  Yanlin Chen  Zihao Zhu  Jun Yin  Faxiang Qin
Institution:1. Institute for Composites Science Innovation (InCSI), School of Materials Science and Engineering, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310028 China;2. The State Key Laboratory of Fluid Power and Mechatronic Systems, School of Mechanical Engineering, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310028 China;3. Institute for Composites Science Innovation (InCSI), School of Materials Science and Engineering, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310028 China

Ningbo Innovation Center, Zhejiang University, 1 South Qianhu Road, Ningbo, 315100 China

Abstract:3D printed graphene aerogels hold promise for flexible sensing fields due to their flexibility, low density, conductivity, and piezo-resistivity. However, low printing accuracy/fidelity and stochastic porous networks have hindered both sensing performance and device miniaturization. Here, printable graphene oxide (GO) inks are formulated through modulating oxygen functional groups, which allows printing of self-standing 3D graphene oxide aerogel microlattice (GOAL) with an ultra-high printing resolution of 70 µm. The reduced GOAL (RGOAL) is then stuck onto the adhesive tape as a facile and large-scale strategy to adapt their functionalities into target applications. Benefiting from the printing resolution of 70 µm, RGOAL tape shows better performance and data readability when used as micro sensors and robot e-skin. By adjusting the molecular structure of GO, the research realizes regulation of rheological properties of GO hydrogel and the 3D printing of lightweight and ultra-precision RGOAL, improves the sensing accuracy of graphene aerogel electronic devices and realizes the device miniaturization, expanding the application of graphene aerogel devices to a broader field such as micro robots, which is beyond the reach of previous reports.
Keywords:3D printing  direct ink writing  e-skin  graphene aerogels  micro sensors
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号