首页 | 本学科首页   官方微博 | 高级检索  
     


An ab initio study on luminescent properties and aurophilic attraction of binuclear gold(I) complexes with phosphinothioether ligands
Authors:Pan Qing-Jiang  Zhang Hong-Xing
Affiliation:State Key Laboratory of Theoretical and Computational Chemistry, Institute of Theoretical Chemistry, Jilin University, Changchun 130023, PR China.
Abstract:Electronic structures and spectroscopic properties of the binuclear head-to-tail [Au(2)(PH(2)CH(2)SH)(2)](2+) (1) complex were investigated by ab initio calculations. The solvent effect of the complex in the acetonitrile solution was taken into account by the weakly solvated [Au(2)(PH(2)CH(2)SH)(2)](2+).(MeCN)(2) (2) moiety in the calculations. The ground-state geometries of 1 and 2 were fully optimized by the MP2 method, while their excited-state structures were optimized by the CIS method. Aurophilic attraction apparently exists between the two Au(I) atoms in the ground state and is strongly enhanced in the excited state. A high-energy phosphorescent emission was calculated at 337 nm for 1 in the absence of the interactions with solvent molecules and/or counteranion in solid state; however the lowest-energy emission of 2 was obtained at 614 nm with the nature of (3)A(u)(s(sigma)) --> (1)A(g)(d(sigma)) (metal-centered, MC) transition. The coordination of acetonitrile to the gold atom in solution results in a dramatic red shift of emission wavelength. The investigations on the head-to-tail [Au(2)(PH(2)CH(2)SCH(3))(2)](2+) (5) and [Au(2)(PH(2)CH(2)SCH(3))(2)](2+).(MeCN)(2) (6) moieties indicate that the CH(3) substituent on the S atom causes blue shifts of emission wavelength for 5 and 6 with respect to 1 and 2. By comparison between Au(I) thioether 1 and head-to-tail Au(I) thiolate [Au(2)(PH(2)CH(2)S)(2)] (7), it is concluded that the S-->Au dative bonding results in evidently different transition characteristics from the S-Au covalent bonding in the Au(I) thioether/thiolate complexes.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号