首页 | 本学科首页   官方微博 | 高级检索  
     


Parallel implementation of divide-and-conquer semiempirical quantum chemistry calculations
Authors:Wei Pan  Tai-Sung Lee  Weitao Yang
Abstract:We have implemented a parallel divide-and-conquer method for semiempirical quantum mechanical calculations. The standard message passing library, the message passing interface (MPI), was used. In this parallel version, the memory needed to store the Fock and density matrix elements is distributed among the processors. This memory distribution solves the problem of demanding requirement of memory for very large molecules. While the parallel calculation for construction of matrix elements is straightforward, the parallel calculation of Fock matrix diagonalization is achieved via the divide-and-conquer method. Geometry optimization is also implemented with parallel gradient calculations. The code has been tested on a Cray T3E parallel computer, and impressive speedup of calculations has been achieved. Our results indicate that the divide-and-conquer method is efficient for parallel implementation. © 1998 John Wiley & Sons, Inc. J Comput Chem 19: 1101–1109, 1998
Keywords:parallel computation  divide-and-conquer  semiempirical  quantum mechanical
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号