首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Ab initio conformational analysis of cyclooctane molecule
Authors:Willian R Rocha  Josefredo R Pliego  Stella M Resende  Hlio F Dos Santos  Marcos A De Oliveira  Wagner B De Almeida
Abstract:The potential energy surface (PES) for the cyclooctane molecule was comprehensively investigated at the Hartree–Fock (HF) level of theory employing the 3–21G, 6–31G, and 6–31G* basis sets. Six distinct true minimum energy structures (named B, BB, BC, CROWN, TBC, and TCC1), characterized through harmonic frequency analysis, were located on the multidimensional PES. Two transition state structures were also located on the PES for the cyclooctane molecule. Electron correlation effects were accounted for using the Møller–Plesset second-order perturbation theory (MP2) approach. The predicted global minimum energy structure on the ab initio PES for the cyclooctane molecule is the BC conformer. A gas phase electron diffraction study at 300 K suggested a conformational mixture while an NMR study in solution at 161.5 K predicted the BC conformer as the predominant form. The equilibrium constants reported in the present study, which were evaluated from the ab initio calculated total Gibbs free energy change values, were in good agreement with both experimental investigations. The ab initio results showed that the low temperature condition significantly favored the BC conformer while above room temperature both BC and CROWN structures can coexist. © 1998 John Wiley & Sons, Inc. J Comput Chem 19: 524–534, 1998
Keywords:ab initio conformational analysis  cyclooctane molecule  potential energy surface  Hartree–  Fock theory    ller–  Plesset theory
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号