首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Connections Between the Thermodynamics of Classical Electrodynamic Systems and Quantum Mechanical Systems for Quasielectrostatic Operations
Authors:Daniel C Cole
Abstract:The thermodynamic behavior is analyzed of a single classical charged particle in thermal equilibrium with classical electromagnetic thermal radiation, while electrostatically bound by a fixed charge distribution of opposite sign. A quasistatic displacement of this system in an applied electrostatic potential is investigated. Treating the system nonrelativistically, the change in internal energy, the work done, and the change in caloric entropy are all shown to be expressible in terms of averages involving the distribution of the position coordinates alone. A convenient representation for the probability distribution is shown to be the ensemble average of the absolute square value of an expansion over the eigenstates of a Schrödinger-like equation, since the heat flow is shown to vanish for each hypothetical ldquostate.rdquo Subject to key assumptions highlighted here, the demand that the entropy be a function of state results in statistical averages in agreement with the form in quantum statistical mechanics. Examining the very low and very high temperature situations yields Planck's and Boltzmann's constants. The blackbody radiation spectrum is then deduced. From the viewpoint of the theory explored here, the method in quantum statistical mechanics of statistically counting the ldquostatesrdquo at thermal equilibrium by using the energy eigenvalue structure, is simply a convenient counting scheme, rather than actually representing averages involving physically discrete energy states.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号