首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Rapid characterization of covalent modifications to rat brain mitochondrial proteins after ex vivo exposure to 4-hydroxy-2-nonenal by liquid chromatography-tandem mass spectrometry using data-dependent and neutral loss-driven MS3 acquisition
Authors:Stevens Stanley M  Rauniyar Navin  Prokai Laszlo
Institution:Department of Molecular Biology and Immunology, University of North Texas Health Science Center, 3500 Camp Bowie Boulevard, Fort Worth, TX 76107-2699, USA.
Abstract:The modification of mitochondrial proteins enriched from rat forebrain by the major lipid peroxidation product 4-hydroxy-2-nonenal (HNE) was investigated using high performance liquid chromatography (HPLC) and tandem mass spectrometry. Subcellular fractionation in conjunction with a 'shotgun-based' approach that involved both conventional data-dependent and neutral loss (NL)-driven MS(3) data acquisition on a hybrid linear ion trap-Fourier transform ion cyclotron resonance mass spectrometer (LTQ-FT) was utilized. Using a relatively rapid linear HPLC gradient (1 h) for complex mixture analysis, 24 sites of HNE modification on 15 unique proteins were identified which corresponded exclusively to Michael adduct formation on histidine residues. Since a number of HNE-modified peptides produced a predominant HNE NL fragment-ion signal upon collision-induced dissociation (CID), NL-driven MS(3) data-dependent acquisition was a valuable method to enhance fragmentation information for these particular modified peptides. Of the 24 HNE modification sites identified, approximately 25% were determined from the MS(3) spectra alone. We envision the reported methodology as an efficient screening approach for HNE modification site selectivity that could ultimately provide a foundation for the development of targeted schemes for the characterization of in vivo HNE-protein adducts.
Keywords:proteomics  mitochondria  4‐hydroxy‐2‐nonenal  Fourier transform ion cyclotron resonance mass spectrometry  tandem mass spectrometry  MS3
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号