首页 | 本学科首页   官方微博 | 高级检索  
     


Interaction of functional dendrimers with multilamellar liposomes: design of a model system for studying drug delivery
Authors:Pantos Alexandros  Tsiourvas Dimitris  Nounesis George  Paleos Constantinos M
Affiliation:Institutes of Physical Chemistry and of Radioisotopes and Radiodiagnostic Products, NCSR "Demokritos", 15310 Aghia Paraskevi, Attiki, Greece.
Abstract:Multilamellar liposomes consisting of phosphatidylcholine-cholesterol-dihexadecyl phosphate (19:9.5:1 molar ratio) and dispersed in aqueous or phosphate buffer solutions were interacted with poly(propylene imine) dendrimers which were partially functionalized with guanidinium groups. The remaining toxic external primary amino groups of the dendrimers were reacted with propylene oxide, affording the corresponding hydroxylated derivatives. Microscopic, zeta-potential, and dynamic light scattering techniques have shown that liposomal-dendrimeric molecular recognition occurs due to the interaction between the complementary phosphate and guanidinium groups. Calcein liposomal entrapment experiments demonstrate a limited leakage, i.e., less than 13%, following liposomes interaction with the modified dendrimers. Calorimetric studies indicate that the enthalpy of the interaction is dependent on the number of guanidinium groups present at the dendrimeric surface and the medium. The process is reversible, and redispersion of the aggregates occurs by adding concentrated phosphate buffer. Two corticosteroid drugs, i.e., betamethasone dipropionate and betamethasone valerate, were encapsulated into the functionalized dendrimers. Drug transport from guanidinylated dendrimers to multilamellar liposomes ranges from 40% to 85%, and it is also dependent on the medium and the degree of dendrimer guanidinylation.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号