首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Finding the transition state without initial guess: the growing string method for Newton trajectory to isomerization and enantiomerization reaction of alanine dipeptide and poly(15)alanine
Authors:Quapp Wolfgang
Institution:Mathematical Institute, University of Leipzig, Augustus-Platz, D-04109 Leipzig, Germany. quapp@rz.uni-leipzig.de
Abstract:We report a new, high-dimensional application of a method for finding a transition state (TS) between a reactant and a product on the potential energy surface: the search of a growing string along a reaction path defined by any Newton trajectory in combination with the Berny method (Quapp, J Chem Phys (2005), 122, 174106; we have provided this algorithm on a web page). Two given minima are connected by a one-dimensional, but usually curvilinear reaction coordinate. It leads to the TS region. The application of the method to alanine dipeptide finds the TS of the isomerisation C(7 ax) --> C(5), some TSs of the enantiomerisation of C(7 ax) from L-form to quasi-D-form, and it finds the TS region of a transition of a partly unfolded, bent structure which turns back into a mainly alpha-helix in the Ac(Ala)(15)NHMe polyalanine (all at the quantum mechanical level B3LYP/6-31G: the growing string calculation is interfaced with the Gaussian03 package). The formation or dissolvation of some alpha- or 3(10)-hydrogen bonds of the helix are discussed along the TS pathway, as well as the case of an enantiomer at the central residue of the helix.
Keywords:potential energy surface  saddle point  reaction path  Newton trajectory  projection  alanine dipeptide  polyalanine  27‐  310‐  α‐H‐bond
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号