首页 | 本学科首页   官方微博 | 高级检索  
     


Boosting model performance and interpretation by entangling preprocessing selection and variable selection
Authors:Jan Gerretzen  Ewa Szymańska  Jacob Bart  Antony N. Davies  Henk-Jan van Manen  Edwin R. van den Heuvel  Jeroen J. Jansen  Lutgarde M.C. Buydens
Affiliation:1. Radboud University, Institute for Molecules and Materials, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands;2. TI-COAST, P.O. Box 18, 6160 MD Geleen, The Netherlands;3. AkzoNobel, Supply Chain, Research & Development, Strategic Research Group – Measurement & Analytical Science, Zutphenseweg 10, 7418 AJ Deventer, The Netherlands;4. SERC, Sustainable Environment Research Centre, Faculty of Computing, Engineering and Science, University of South Wales, Pontypridd, CF37 1DL, UK;5. Eindhoven University of Technology, Den Dolech 2, 5600 MB Eindhoven, The Netherlands
Abstract:The aim of data preprocessing is to remove data artifacts—such as a baseline, scatter effects or noise—and to enhance the contextually relevant information. Many preprocessing methods exist to deliver one or more of these benefits, but which method or combination of methods should be used for the specific data being analyzed is difficult to select. Recently, we have shown that a preprocessing selection approach based on Design of Experiments (DoE) enables correct selection of highly appropriate preprocessing strategies within reasonable time frames.
Keywords:Design of experiments   Variable selection   Preprocessing selection   Partial least squares   Chemometrics
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号