首页 | 本学科首页   官方微博 | 高级检索  
     检索      


DFT and AIM study of the protonation of nitrous acid and the pKa of nitrous acidium ion
Authors:Crugeiras Juan  Ríos Ana  Maskill Howard
Institution:Department of Physical Chemistry, Faculty of Chemistry, University of Santiago de Compostela, Santiago de Compostela, Spain. juan.crugeiras@usc.es
Abstract:The gas phase and aqueous thermochemistry, NMR chemical shifts, and the topology of chemical bonding of nitrous acid (HONO) and nitrous acidium ion (H(2)ONO(+)) have been investigated by ab initio methods using density functional theory. By the same methods, the dissociation of H(2)ONO(+) to give the nitrosonium ion (NO(+)) and water has also been investigated. We have used Becke's hybrid functional (B3LYP), and geometry optimizations were performed with the 6-311++G(d,p) basis set. In addition, highly accurate ab initio composite methods (G3 and CBS-Q) were used. Solvation energies were calculated using the conductor-like polarizable continuum model, CPCM, at the B3LYP/6-311++G(d,p) level of theory, with the UAKS cavity model. The pK(a) value of H(2)ONO(+) was calculated using two different schemes: the direct method and the proton exchange method. The calculated pK(a) values at different levels of theory range from -9.4 to -15.6, showing that H(2)ONO(+) is a strong acid (i.e., HONO is only a weak base). The equilibrium constant, K(R), for protonation of nitrous acid followed by dissociation to give NO(+) and H(2)O has also been calculated using the same methodologies. The pK(R) value calculated by the G3 and CBS-QB3 methods is in best (and satisfactory) agreement with experimental results, which allows us to narrow down the likely value of the pK(a) of H(2)ONO(+) to about -10, a value appreciably more acidic than literature values.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号