首页 | 本学科首页   官方微博 | 高级检索  
     


Self-assembly of amphiphilic hexapyridinium cations at the air/water interface and on HOPG surfaces.
Authors:Haofei Gong Dr.  Björn Bredenkötter Dr.  Christoph Meier  Carola Hoffmann‐ Richter Dr.  Ulrich Ziener Dr.  Dirk G. Kurth Dr.  Dirk Volkmer Prof. Dr.
Affiliation:Department of Inorganic Chemistry II, University of Ulm, 89081 Ulm, Albert-Einstein-Allee 11, Germany.
Abstract:Mono- and multilayers of a novel amphiphilic hexapyridinium cation with six eicosyl chains (3) are spread at the air/water interface as well as on highly ordered pyrolytic graphite (HOPG). On water, the monolayer of 3 is investigated by recording surface pressure/area and surface potential/area isotherms, and by Brewster angle microscopy (BAM). Self-organized tubular micelles with an internal edge-on orientation of molecules form at the air/water interface at low surface pressure whereas multilayers are present at high surface pressure, after a phase transition. Packing motifs suggesting a tubular arrangement of the constituting molecules were gleaned from atomic force microscopy (AFM) investigations of Langmuir-Blodgett (LB) monolayers being transferred on HOPG at different surface pressures. These LB film structures are compared to the self-assembled monolayer (SAM) of 3 formed via adsorption from a supersaturated solution, which is studied by scanning tunnelling microscopy (STM). On HOPG the SAM of 3 consists of nanorods with a highly ordered edge-on packing of the aromatic rings and an arrangement of alkyl chains which resembles the packing of molecules at the air/water interface at low surface pressure. Additional details of the molecular packing were gleaned from single-crystal X-ray structure analysis of the hexapyridinium model compound 2b, which possesses methyl instead of eicosyl residues.
Keywords:cations  micelles  scanning probe microscopy  self‐assembly  surface chemistry
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号