首页 | 本学科首页   官方微博 | 高级检索  
     


Design of bitstream-based adaptive-connected array architecture for mmWave Multiuser MIMO systems
Abstract:We investigate a bitstream-based adaptive-connected massive multiple-input multiple-output (MIMO) architecture that trades off between high-power full-connected and low-performance sub-connected hybrid precoding architectures. The proposed adaptive-connected architecture which enables each data stream to be computed independently and in parallel, consists of fewer phase shifters (PS) and switches than the other adaptive-connected architectures. With smaller array groups, the proposed architecture uses fewer PS and switches, so that its power consumption gradually decreases in millimeter wave (mmWave) Multiuser MIMO (MU-MIMO) system. To fully demonstrate the performance of the proposed architecture in mmWave MU-MIMO system with practical constraints, we combine the connection-state matrix with the hybrid precoders and combiners to maximize energy efficiency (EE) of the system equipped with the proposed architecture. We then propose the hybrid precoding and combining (HPC) scheme suitable for multi-user and multi-data streams which utilizes the SCF algorithm to obtain the constant modulus of the analog precoder at convergence. In the digital precoding and combining stage, the digital precoder and combiner are designed to reduce the amount of computation by utilizing the singular value decomposition (SVD) of corresponding equivalent channel. In the mmWave MU-MIMO-OFDM system equipped with the proposed architecture, with the increase of the total number of data streams, simulation results demonstrate that we can exploit the proposed HPC scheme to achieve better EE than the traditional hybrid full-connected architecture exploiting some existing schemes.
Keywords:Massive MIMO  mmWave  Adaptive-connected array architecture  Multi-stream  Energy efficiency
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号