首页 | 本学科首页   官方微博 | 高级检索  
     


Understanding guest and pressure‐induced porosity through structural transition in flexible interpenetrated MOF by Raman spectroscopy
Authors:Gayatri Kumari  N. R. Patil  Venkata Srinu Bhadram  Ritesh Haldar  Satyanarayana Bonakala  Tapas Kumar Maji  Chandrabhas Narayana
Abstract:Interpenetrating metal organic frameworks are interesting functional materials exhibiting exceptional framework properties. Uptake or exclusion of guest molecules can induce sliding in the framework making it porous or non‐porous. To understand this dynamic nature and how framework interaction changes during sliding, metal organic framework (MOF) 508 {Zn(BDC)( 4,4′‐Bipy)0.5 · DMF(H2O)0.5} was selected for study. We have investigated structural transformation in MOF‐508 under variable conditions of temperature, pressure and gas loading using Raman spectroscopy and substantiated it with IR studies and density functional theory (DFT) calculations. Conformational changes in the organic linkers leading to the sliding of the framework result in changes in Raman spectra. These changes in the organic linkers are measured as a function of high pressure and low temperature, suggesting that the dynamism in MOF‐508 framework is driven by ligand conformation change and inter‐linker interactions. The presence of Raman signatures of adsorbed CO2 and its librational mode at 149 cm−1 suggests cooperative adsorption of CO2 in the MOF‐508 framework, which is also confirmed from DFT calculations that give a binding energy of 34 kJ/mol. Copyright © 2015 John Wiley & Sons, Ltd.
Keywords:metal organic framework solids  Raman spectroscopy  phase transition  density functional theory  high pressure
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号