首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Analytic coupling and Sudakov effects in exclusive processes: pion and \gamma ^*\gamma \to \pi ^0 form factors
Authors:NG Stefanis  W Schroers  H-Ch Kim
Institution:Institut für Theoretische Physik II, Ruhr-Universit?t Bochum, 44780 Bochum, Germany, DE
Fachbereich Physik, Universit?t Wuppertal, 42097 Wuppertal, Germany, DE
Department of Physics, Pusan National University, Pusan 609-735, Republic of Korea, KR
Abstract:We develop and discuss in technical detail an infrared-finite factorization and optimized renormalization scheme for calculating exclusive processes, which enables the inclusion of transverse degrees of freedom without entailing suppression of calculated observables, like form factors. This is achieved by employing an analytic, i.e., infrared stable, running strong-coupling which removes the Landau singularity at by a minimum power-behaved correction. The ensuing contributions to the cusp anomalous dimension – related to the Sudakov form factor – and to the quark anomalous dimension – which controls evolution – lead to an enhancement at high of the hard part of exclusive amplitudes, calculated in perturbative QCD, while simultaneously improving its scaling behavior. The phenomenological implications of this framework are analyzed by applying it to the pion's electromagnetic form factor, including the NLO contribution to the hard-scattering amplitude, and also to the pion–photon transition at LO. For the pion wave function, an improved ansatz of the Brodsky–Huang–Lepage type is employed, which includes an effective (constituent-like) quark mass, GeV. Predictions for both form factors are presented and compared to the experimental data, applying Brodsky–Lepage–Mackenzie commensurate scale setting. We find that the perturbative hard part prevails at momentum transfers above about 20 GeV, while at lower values the pion form factor is dominated by Feynman-type contributions. The theoretical prediction for the form factor indicates that the true pion distribution amplitude may be somewhat broader than the asymptotic one. Received: 19 May 2000 / Revised version: 16 August 2000 / Published online: 13 November 2000
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号