首页 | 本学科首页   官方微博 | 高级检索  
     


A mixed integer programming model for scheduling orders in a steel mill
Authors:C. N. Redwine  D. A. Wismer
Affiliation:1. Department of Industrial Engineering, College of Engineering, West Virginia University, Morgantown, West Virginia
2. Urban and Industrial Systems Branch, Systems Control, Palo Alto, California
Abstract:The problem of scheduling orders at each facility of a large integrated steel mill is considered. Orders are received randomly, and delivery dates are established immediately. Each order is filled by converting raw materials into a finished saleable steel product by a fixed sequence of processes. The application of a deterministic mixed integer linear programming model to the order scheduling problem is given. One important criterion permitted by the model is to process the orders in a sequence which minimizes the total tardiness from promised delivery for all orders; alternative criteria are also possible. Most practical constraints which arise in steelmaking can be considered within the formulation. In particular, sequencing and resource availability constraints are handled easily. The order scheduling model given here contains many variables and constraints, resulting in computational difficulties. A decomposition algorithm is devised for solving the model. The algorithm is a special case of Benders partitioning. Computational experience is reported for a large-scale problem involving scheduling 102 orders through ten facilities over a six-week period. The exact solution to the large-scale problem is compared with schedules determined by several heuristic dispatching rules. The dispatching rules took into consideration such things as due date, processing time, and tardiness penalties. None of the dispatching rules found the optimal solution.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号