首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Organogel-hydrogel transformation by simple removal or inclusion of N-Boc-protection
Authors:Kar Tanmoy  Mandal Subhra Kanti  Das Prasanta Kumar
Institution:Department of Biological Chemistry, Indian Association for the Cultivation of Science, Jadavpur, Kolkata, 700032, India.
Abstract:Development of organo- and hydrogelators is on the rise because of their extensive applications, from advanced materials to biomedicine. However, designing both types of gelator from a common structural scaffold is challenging, and becomes more significant if transformation between them can be achieved by a simple method. The present work reports the design and synthesis of both organo- and hydrogelators from amino acid/peptide-based amphiphilic precursors with a naphthyl group at the N terminus and a primary amine-containing hydrophilic ethyleneoxy unit at the C terminus. In alkaline medium, tert-butyloxycarbonyl (Boc) protection at the primary amine of the amphiphiles resulted in efficient organogelators (minimum-gelation concentration (MGC)=0.075-1.5% w/v). Interestingly, removal of the Boc protection from the ethyleneoxy unit, under acidic conditions, yielded amphiphiles capable of gelating water (MGC=0.9-3.0% w/v). Simple protection and deprotection chemistry was used to achieve transformation between the organogel and hydrogel by alteration of the pH. Combinations of different aliphatic and aromatic amino acids were investigated to discover their cumulative effect on the gelation properties. Field-emission scanning electron microscopy (FESEM) and transmission electron microscopy (TEM) were employed to investigate the supramolecular morphology of the thermoreversible gels. Spectroscopic investigations (FTIR, photoluminescence, XRD) revealed that noncovalent interactions, such as hydrogen bonding, π-π stacking, and van der Waals interactions play a decisive role in self-assembled gelation.
Keywords:amino acids  amphiphiles  hydrogels  organogels  protecting groups
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号