首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Improved valence basis sets for divalent lanthanide 4f-in-core pseudopotentials
Authors:Michael H��lsen  Michael Dolg  Pascal Link  Uwe Ruschewitz
Institution:1. Institute for Theoretical Chemistry, University of Cologne, Greinstr. 4, 50939, Cologne, Germany
2. Institute for Inorganic Chemistry, University of Cologne, Greinstr. 6, 50939, Cologne, Germany
Abstract:Improved energy-optimized (6s5p4d) and (7s6p5d) primitive valence basis sets have been derived for energy-consistent scalar-relativistic 4f-in-core pseudopotentials of the Stuttgart-Cologne variety modeling divalent lanthanides with a $4\hbox{f}^{n+1}$ occupation (n = 0?C13 for La?CYb). Segmented contracted basis sets covering the range of polarized double-, triple-, and quadruple-zeta quality, augmented by 2f1g correlation sets, were created for use in molecular calculations. The basis sets contain smaller (4s4p3d) and (5s5p4d) primitive subsets, which are designed in particular for solid state calculations of crystals containing divalent lanthanide ions. Hartree?CFock, density functional theory and coupled cluster results obtained with the new basis sets for lanthanide atomic ionization potentials as well as of geometry optimizations of various test molecules, i.e. selected lanthanide mono- and dihydrides, mono- and difluorides, and monooxides, show a satisfactory agreement with experimental data as well as with corresponding scalar-relativistic all-electron results. Core-polarization potentials are found to improve the results, especially for the atomic first and second ionization potentials.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号